
智力活动是一种生活态度 https://mountaye.github.io/blog/
.py | 一个 PyTorch 机器学习项目长什么样
自学,或者说一切学习和教学,本质就是在已经掌握的知识和未知的目标知识之间修路。路有两种修法,一是理论或者说是第一性原理路线,从不证自明的公理或者已经掌握的知识出发,通过逻辑推理一步步得到新的知识;另一种是实践或者说工程师路线,拿到一个已经可以工作的产品,划分成各个子系统,通过输入的改变来观察输出的不同,直到子系统简化到自己可以理解的地步,不再是黑箱,借此了解整个系统的功能。
但是当学习的对象复杂到一定程度之后,凭借一个人的自学能力,只用其中一种方法往往难以钻透。又或者两种方法学到的路线并非同一条路。对于机器学习,理论路线就是“让输入数据通过一个带有超多参数的函数,根据函数返回值和输出数据之间的差别修正参数,直到函数能够近似输入数据和输出数据之间的关系”;实践中代码往往会使用很多库作者封装好的函数,只读源码往往一头雾水。
所以,看到 PyTorch 官网的这篇教程 WHAT IS TORCH.NN REALLY?: https://pytorch.org/tutorials/beginner/nn_tutorial.html 可以说是喜出望外,把两种路线写出的代码都给了出来,对于自学者来说,就像罗塞塔石碑一样可以互相对照。这里我把 CNN 相关的部分抽掉了,毕竟 CNN 只是深度学习的一个子集,深度学习只是机器学习的一个子集,和这篇文章的主题关系不大。
原文先按照第一性原理,尽量用原生 python 写了一遍,然后一步一步重构成接近生产环境的代码。这里我把顺序反过来,先放出重构之后的最终结果:
from pathlib import Path import requests import pickle import gzip import numpy as np import torch import torch.nn.functional as F from torch import nn from torch import optim from torch.utils.data import TensorDataset,DataLoader # Using GPU print(torch.cuda.is_available()) dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") # Wrapping DataLoader # https://pytorch.org/tutorials/beginner/basics/data_tutorial.html?highlight=dataloader # https://pytorch.org/tutorials/beginner/data_loading_tutorial.html?highlight=dataloader def preprocess(x, y):return x.view(-1, 1, 28, 28).to(dev), y.to(dev) def get_data(train_ds, valid_ds, bs):return (DataLoader(train_ds, batch_size=bs, shuffle=True),DataLoader(valid_ds, batch_size=bs * 2),) class WrappedDataLoader:def __init__(self, dl, func):self.dl = dlself.func = func def __len__(self):return len(self.dl) def __iter__(self):batches = iter(self.dl)for b in batches:yield (self.func(*b)) # Define the neural network model to be trained # # If the model is simple: # model = nn.Sequential(nn.Linear(784, 10)) # generally the model is a class that inherites nn.Module and implements forward() class Mnist_Logistic(nn.Module):def __init__(self):super().__init__()# self.weights = nn.Parameter(torch.randn(784, 10) / math.sqrt(784)) # self.bias = nn.Parameter(torch.zeros(10)) self.lin = nn.Linear(784, 10) def forward(self, xb):# return xb @ self.weights + self.bias return self.lin(xb) # Define the training pipeline in fit() def loss_batch(model, loss_func, xb, yb, opt=None):loss = loss_func(model(xb), yb) if opt is not None:loss.backward()opt.step()opt.zero_grad() return loss.item(), len(xb) def fit(epochs, model, loss_func, opt, train_dl, valid_dl):for epoch in range(epochs):model.train()for xb, yb in train_dl:loss_batch(model, loss_func, xb, yb, opt) model.eval()with torch.no_grad():losses, nums = zip(*[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl])val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums) print(epoch, val_loss)return None # __main()__: # data DATA_PATH = Path("data") PATH = DATA_PATH / "mnist" PATH.mkdir(parents=True, exist_ok=True) URL = "https://github.com/pytorch/tutorials/raw/master/_static/" FILENAME = "mnist.pkl.gz" if not (PATH / FILENAME).exists():content = requests.get(URL + FILENAME).content(PATH / FILENAME).open("wb").write(content) with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1") x_train, y_train, x_valid, y_valid = map(torch.tensor, (x_train, y_train, x_valid, y_valid) ) train_dataset = TensorDataset(x_train, y_train) valid_dataset = TensorDataset(x_valid, y_valid) train_dataloader, valid_dataloader = get_data(train_ds, valid_ds, bs) train_dataloader = WrappedDataLoader(train_dataloader, preprocess) valid_dataloader = WrappedDataLoader(valid_dataloader, preprocess) # hyperparameters/model learning_rate = 0.1 epochs = 2 loss_function = F.cross_entropy # loss function model = Mnist_CNN() model.to(dev) optimizer = optim.SGD(model.parameters(), lr=learning_rate , momentum=0.9) # training fit(epochs, model, loss_function, optimizer, train_dataloader, valid_dataloader)
可以看到,一个项目主干可以分成4部分:
- 准备数据
- 定义模型
- 描述流程
- 实际运行
下面把各部分拆分开来,把两种思路的代码进行对比。
1. 准备数据
重构之前
DATA_PATH = Path("data") PATH = DATA_PATH / "mnist" PATH.mkdir(parents=True, exist_ok=True) URL = "https://github.com/pytorch/tutorials/raw/master/_static/" FILENAME = "mnist.pkl.gz" if not (PATH / FILENAME).exists():content = requests.get(URL + FILENAME).content(PATH / FILENAME).open("wb").write(content) with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1") x_train, y_train, x_valid, y_valid = map(torch.tensor, (x_train, y_train, x_valid, y_valid) ) n, c = x_train.shape
重构以后:
# Wrapping DataLoader # https://pytorch.org/tutorials/beginner/basics/data_tutorial.html?highlight=dataloader # https://pytorch.org/tutorials/beginner/data_loading_tutorial.html?highlight=dataloader def preprocess(x, y):return x.view(-1, 1, 28, 28).to(dev), y.to(dev) def get_data(train_ds, valid_ds, bs):return (DataLoader(train_ds, batch_size=bs, shuffle=True),DataLoader(valid_ds, batch_size=bs * 2),) class WrappedDataLoader:def __init__(self, dl, func):self.dl = dlself.func = func def __len__(self):return len(self.dl) def __iter__(self):batches = iter(self.dl)for b in batches:yield (self.func(*b))
2. 定义模型
重构之前
weights = torch.randn(784, 10) / math.sqrt(784) weights.requires_grad_() bias = torch.zeros(10, requires_grad=True) def log_softmax(x):return x - x.exp().sum(-1).log().unsqueeze(-1) def model(xb):return log_softmax(xb @ weights + bias) def nll(input, target):return -input[range(target.shape[0]), target].mean() loss_func = nll def accuracy(out, yb):preds = torch.argmax(out, dim=1)return (preds == yb).float().mean()
重构以后
# If the model is simple: model = nn.Sequential(nn.Linear(784, 10)) # generally the model is a class that inherites nn.Module and implements forward() class Mnist_Logistic(nn.Module):def __init__(self):super().__init__()# self.weights = nn.Parameter(torch.randn(784, 10) / math.sqrt(784)) # self.bias = nn.Parameter(torch.zeros(10)) self.lin = nn.Linear(784, 10) def forward(self, xb):# return xb @ self.weights + self.bias return self.lin(xb)
3. 描述流程
重构之前
lr = 0.5 # learning rate epochs = 2 # how many epochs to train for for epoch in range(epochs):for i in range((n - 1) // bs + 1):# set_trace() start_i = i * bsend_i = start_i + bsxb = x_train[start_i:end_i]yb = y_train[start_i:end_i]pred = model(xb)loss = loss_func(pred, yb) loss.backward()with torch.no_grad():weights -= weights.grad * lrbias -= bias.grad * lrweights.grad.zero_()bias.grad.zero_()
重构以后
def loss_batch(model, loss_func, xb, yb, opt=None):loss = loss_func(model(xb), yb) if opt is not None:loss.backward()opt.step()opt.zero_grad() return loss.item(), len(xb) def fit(epochs, model, loss_func, opt, train_dl, valid_dl):for epoch in range(epochs):model.train()for xb, yb in train_dl:loss_batch(model, loss_func, xb, yb, opt) model.eval()with torch.no_grad():losses, nums = zip(*[loss_batch(model, loss_func, xb, yb) for xb, yb in valid_dl])val_loss = np.sum(np.multiply(losses, nums)) / np.sum(nums) print(epoch, val_loss)return None
4. 实际运行
重构之前
# __main()__: print(loss_func(model(xb), yb), accuracy(model(xb), yb))
重构以后
# __main()__: # data DATA_PATH = Path("data") PATH = DATA_PATH / "mnist" PATH.mkdir(parents=True, exist_ok=True) URL = "https://github.com/pytorch/tutorials/raw/master/_static/" FILENAME = "mnist.pkl.gz" if not (PATH / FILENAME).exists():content = requests.get(URL + FILENAME).content(PATH / FILENAME).open("wb").write(content) with gzip.open((PATH / FILENAME).as_posix(), "rb") as f:((x_train, y_train), (x_valid, y_valid), _) = pickle.load(f, encoding="latin-1") x_train, y_train, x_valid, y_valid = map(torch.tensor, (x_train, y_train, x_valid, y_valid) ) train_dataset = TensorDataset(x_train, y_train) valid_dataset = TensorDataset(x_valid, y_valid) train_dataloader, valid_dataloader = get_data(train_ds, valid_ds, bs) train_dataloader = WrappedDataLoader(train_dataloader, preprocess) valid_dataloader = WrappedDataLoader(valid_dataloader, preprocess) # hyperparameters/model learning_rate = 0.1 epochs = 2 loss_function = F.cross_entropy # loss function model = Mnist_CNN() model.to(dev) optimizer = optim.SGD(model.parameters(), lr=learning_rate , momentum=0.9) # training fit(epochs, model, loss_function, optimizer, train_dataloader, valid_dataloader)
Like my work?
Don't forget to support or like, so I know you are with me..
Comment…